TOPOLOGY VIA LOGIC

STEVEN VICKERS

Department of Computing, Imperial College of Science and Technology, University of London

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1989

First published 1989 Reprinted 1990 First paperback edition 1996

British Library Cataloguing in Publication Data available

Library of Congress Cataloguing in Publication Data available

ISBN 0 521 36062 5 hardback ISBN 0 521 57651 2 paperback

Transferred to digital printing 2003

CONTENTS

Preface Notation

1	Introdu A Hist	action orical Overview	1		
2	Affirm	active and refutative assertions	5		
	In which we see a Logic of Finite Observations and take this as the notion we				
wa	int to sti				
3	Frame	S	12		
	In which we set up an algebraic theory for the Logic of Finite Observations: its				
als	gebras a	re frames.			
	3.1	Algebraicizing logic	12		
	3.2	Posets	13		
	3.3	Meets and joins	14		
	3.4	Lattices	18		
	3.5	Frames	21		
	3.6	Topological spaces	22		
	3.7	Some examples from computer science	23		
		Finite observations on bit streams	23		
		Different physical assumptions	27		
		Flat domains	28		
		Function spaces	29		
	3.8	Bases and subbases	31		
	3.9	The real line	32		
	3.10	Complete Heyting algebras	34		

4	Frame	s as algebras	38		
	In whi	ch we see methods that exploit our algebraicizing of logic.			
	4.1	Semilattices	38		
	4.2	Generators and relations	39		
	4.3	The universal characterization of presentations	42		
	4.4	Generators and relations for frames	46		
5	Topolo	ogy: the definitions	52		
	In whi	ch we introduce Topological Systems, subsuming topological sp	oaces and		
lo	cales.				
	5.1	Topological systems	52		
	5.2	Continuous maps	54		
	5.3	Topological spaces	57		
		Spatialization	59		
	5.4	Locales	60		
		Localification	62		
	5.5	Spatial locales or sober spaces	64		
	5.6	Summary	67		
6	New to	New topologies for old 70			
	In whi	ch we see some ways of constructing topological systems, and	some ways		
of	specifyi	ng what they construct.			
	6.1	Subsystems	70		
	6.2	Sublocales	71		
	6.3	Topological sums	76		
	6.4	Topological products	80		
7	Point logic 89				
	In whic	ch we seek a logic of points, and find an ordering and a weak a	lisjunction.		
	7.1	The specialization preorder	89		
	7.2	Directed disjunctions of points	92		
	7.3	The Scott topology	95		
8	Compa	ctness	98		
	In which	ch we define conjunctions of points and discover the notion of			
coi	mpactne	ss.			
	8.1	Scott open filters	98		
	8.2	The Hofmann–Mislove Theorem	100		
	8.3	Compactness and the reals	103		
	8.4	Examples with bit-streams	105		
	8.5	Compactness and products	106		

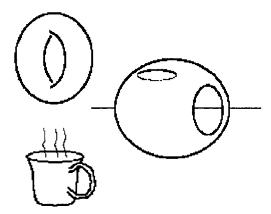
	8.6	Local compactness and function spaces	110
9	Spectral	algebraic locales	116
	In which	we see a category of locales within which we can do the topolo	gy of
do	main theo	ory.	
	9.1	Algebraic posets	116
	9.2	Spectral locales	119
	9.3	Spectral algebraic locales	121
	9.4	Finiteness, second countability and ω-algebraicity	125
	9.5	Stone spaces	127
10	Domain	Theory	134
	In which we see how certain parts of domain theory can be done topological		
	10.1	Why domain theory?	134
	10.2	Bottoms and lifting	136
	10.3	Products	138
	10.4	Sums	139
	10.5	Function spaces and Scott domains	142
	10.6	Strongly algebraic locales (SFP)	146
	10.7	Domain equations	152
11	Power d	lomains	165
	In which we investigate domains of subsets of a given domain.		
	11.1	Non-determinism and sets	165
	11.2	The Smyth power domain	166
	11.3	Closed sets and the Hoare power domain	169
	11.4	The Plotkin power domain	171
	11.5	Sets implemented as lists	176
12	2 Spectra of rings		181
	In which we see some old examples of spectral locales.		
	12.1	The Pierce spectrum	181
	12.2	Quantales and the Zariski spectrum	182
	12.3	Cohn's field spectrum	185
	Bibliogr	raphy	191
	Index	·v	196

INTRODUCTION

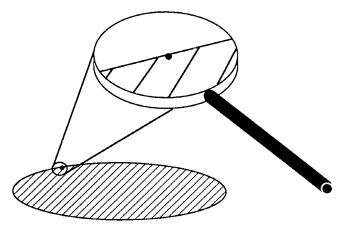
A Historical Overview

The origins of topology are very different from the context we shall be working in, and it is probably as well to compare some different ideas of what it is.

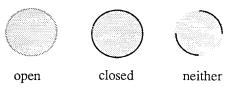
I – The first idea is that of *rubber sheet geometry*, that is to say geometry in which we don't mind stretching our space. This geometry is not at all concerned with distances or angles; it wants to answer questions like, "Is there a hole in this object?" (Although stretching is allowed, tearing isn't.) Martin Gardner [66] says, "Topologists have been called mathematicians who do not know the difference between a cup of coffee and a doughnut," the reason being that each has exactly one hole through it. According to rubber sheet geometry they are equivalent, because if they are made of stretchy enough material, one can be manipulated into the other. (The hole in the cup that counts is the one where you put your finger to hold it. The place where the coffee goes is a mere hollow. Of course, we are thinking of *ring* doughnuts.)



 Π – The study of boundaries. Since tearing is what makes a difference in rubber sheet topology, and since tearing creates new boundaries in the sheet, these would seem an important thing to look at. The characteristic of a boundary point of a set is that however closely you look at it, you can see some neighbouring points inside the set and some outside.



Part of this will entail studying *closed* sets, which include all their boundary points (like a circle with its circumference), and *open* sets, which include none of their boundary points (like a circle without its circumference). Of course, these are just extreme cases. There will also be sets that include some of their boundary points but not all.



III – The abstract study of open and closed sets. The next step is one of abstraction. We forget all the geometry and just take an abstract set of "points", a topological space. We specify certain subsets as being open (their complements are the closed subsets), and we make sure that certain axioms, due to Hausdorff, are satisfied. Then we translate topological arguments from stage II into this abstract setting.

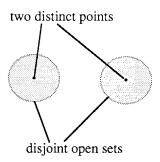
IV – Locale theory. The next step is to forget even about the points, and just take an abstract set of "open sets", with abstract algebraic operations to represent union and intersection. This structure is a *frame*. Sometimes, the points can be reconstructed from this frame of open sets.

This may seem like the ultimate in abstraction, but we shall see how considerations of *logic* make this an appropriate starting point from which to work backwards.

Introduction 3

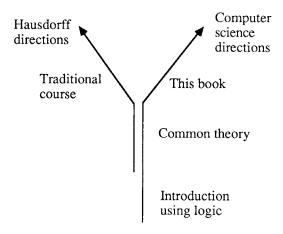
Hausdorff spaces

The topological axioms for open sets are very general and cover far more situations than just those arising from the rubber sheet ideas. Therefore in practice, topologists will apply extra axioms to restrict attention to the kind of space they're interested in. A very common one is the *Hausdorff separation axiom*, which says that any two distinct points can be "housed orf" from each other by disjoint open sets. The mainstream of topology deals with these *Hausdorff spaces*.



In computer science, however, topology is used to explain *approximate* states of information: the points include both approximate points and more refined points, and these relate to the topology by the property that if an open set contains an approximate point then it must also contain any refinement of it. Thus the approximate point and its refinement cannot possibly be "housed orf" by disjoint open sets and the topological space cannot possibly be Hausdorff. This means that topology as used in computer science – at least for the methods described here – runs in a different direction from the mainstream, even though it is still topology.

This book approaches topology in an unusual way, starting from frames and an explanation in terms of logic, and ends up with unusual applications – the non-Hausdorff topologies used in computer science. For computer scientists it is designed to provide a self-contained introduction, but as a route to the more traditional applications it is written to complement the standard introductions, of which there are many.



Other books to read

For rubber sheet geometry – browse through Martin Gardner's collections from his Scientific American column "Mathematical Puzzles and Diversions". Gardner [63] and [86] both contain relevant articles.

For a traditional approach to topology, giving greater emphasis to Hausdorff spaces, there is a wide choice of texts. A standard one is Kelley's "General Topology" [55].

For more on locale theory, an excellent book is Johnstone's "Stone Spaces" [82]. However, the later chapters do assume a good acquaintance with traditional topology.

Category theory

Interspersed throughout the text are remarks such as "categorically speaking, ...". These refer to category theory, and readers familiar with this will understand. The rest can ignore the remarks if they want. They indicate that we are, in a hidden way, using the methods of category theory. It is not necessary to know category theory to be able to understand this book, and in fact it is probably useful to see the methods in action informally before going on to the formal theory. The classic introduction is MacLane's "Categories for the Working Mathematician" [71], but a helpful one for computer scientists is the tutorial part of Pitt et al. [85].

Such remarks, and also those on other topics that are slightly off the main development, are often printed in a smaller typeface.